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The majority of existing single-unit devices for extracting power from sea waves
relies on resonance at the peak frequency of the incident wave spectrum. Such
designs usually call for structural dimensions not too small compared to a typical
wavelength and yield high efficiency only within a limited frequency band. A recent
innovation in Norway departs from this norm by gathering many small buoys in a
compact array. Each buoy is too small to be resonated in typical sea conditions. In
this article a theoretical study is performed to evaluate this new design. Within the
framework of linearization, we consider a periodic array of small buoys with similarly
small separation compared to the typical wavelength. The method of homogenization
(multiple scales) is used to derive the equations governing the macroscale behaviour of
the entire array. These equations are then applied to energy extraction by an infinite
strip of buoys, and by a circular array. In the latter case, advantages are found when
compared to a single buoy of equal volume.

1. Introduction
The prevailing ideas of wave-power extraction are based on matching the impedance

of the extracting device to the characteristics of the incident wave. In particular for a
single unit of an oscillating body, or for an oscillating water column, the device should
be resonated at the peak frequency of the incoming wave and the extraction rate
should equal that of the radiation damping. High efficiency is attainable in a limited
frequency bandwidth around resonance. Ideas have been proposed to broaden the
bandwidth by the method of phase control (Budal & Falnes 1980) or by combining
several devices of different impedances into one. Usually, such devices must be
sufficiently large to operate near the peak of the sea spectrum, and very small bodies
can be resonated only at frequencies above the usual range of the energetic sea.

Recently, Fred Olsen and ABB Power Systems Inc. (http://www02.abb.com) in
Norway have designed a system called FO3 which consists of a rig with many small
floating cylinders hanging underneath it. Energy is absorbed from the waves as they
set the cylinders into vertical motion which then activates a hydraulic system driving
a generator to produce electricity. Currently being tested is a 1:3-scale research model
which measures 12 m × 12 m and is 8 m high. It is estimated that the full-scale model
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Figure 1. Geometry of the array of buoys: (a) a periodic array of buoys, (b) unit cell.

can produce 2.52 MW from 6 m high waves with a period of 9 s, comparable to the
capacity of a wind turbine. Eventually a large array of many rigs can be installed
over a large sea surface area and produce much more electricity.

In this paper we report a theoretical evaluation of this novel concept by examining a
compact array of small buoys with spacings much shorter that the typical wavelength.
Based on linearized theory of small amplitude waves, we first employ the method
of homogenization (i.e. multiple scales) to derive effective equations governing the
dynamics on the macroscale of the wavelength. We show that for buoys of dimensions
and spacing small compared to the water depth and wavelength, their presence and
motion are manifest in a modified free surface condition on the wavelength scale.
Explicit results are obtained for a long array of finite width attacked by normal
incident sea, as well as a circular array of large radius. The dynamics and the energy
efficiency are then compared with those of single buoys.

Specifically we shall consider a square array of small and identical buoys floating
on the surface of the sea of constant mean depth h∗, as shown in figure 1. Each buoy
is a vertical cylinder of circular cross-section of radius a∗ and draft H ∗, spaced at the
distance d∗ from centre to centre. Assuming monochromatic waves of frequency ω∗,
the wavenumber k∗ of the incident waves is given by the real root of the dispersion
relation

ω∗2
= gk∗ tanh(k∗h∗). (1.1)

The incoming wavelength and the sea depth are assumed to be comparable but both
are much greater than the buoy radius a∗, the draft H ∗ and the separation distance
d∗, i.e.

a∗

h∗ ≡ μ � 1, O(a∗) = O(H ∗) = O(d∗), k∗h∗ = O(1). (1.2)

Wave energy is extracted from the heaving oscillation of each buoy through an
absorbing device anchored to the seabed or attached to a fixed supporting structure.

2. Linearized governing equations
We employ the following symbols for physical domains: ΩF is the fluid domain,

SF is the free surface, SW is the lateral surface of the buoys and SB is the bottom
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surface of the buoys. Let us denote all physical variables with asterisks. Assuming
irrotational flow and infinitesimal waves, the velocity potential in water is governed
by Laplace’s equation

�∗Φ∗ =
∂2Φ∗

∂x∗2
+

∂2Φ∗

∂y∗2
+

∂2Φ∗

∂z∗2
= 0, x∗ ∈ ΩF . (2.1)

The total pressure inside water is given by Bernoulli’s equation

p∗ = −ρ
∂Φ∗

∂t∗ − ρgz∗. (2.2)

On the free surface z∗ = η∗(x∗, y∗, t∗), the kinematic boundary condition is

∂Φ∗

∂z∗ =
∂η∗

∂t∗ , x∗ ∈ SF , (2.3)

and the dynamic boundary condition is

gη∗ +
∂Φ∗

∂t∗ = 0, x∗ ∈ SF . (2.4)

As the sea-surface pressure is assumed to be constant. On the seabed the vertical
velocity vanishes, which gives

∂Φ∗

∂z∗ = 0, z∗ = −h∗. (2.5)

On the sidewall of the buoy, there is no normal velocity:

∂Φ∗

∂r∗ = 0, x∗ ∈ SW, (2.6)

where r∗ is the local radial coordinate from the axis of a cylindrical buoy. We assume
that all buoys are installed on a large stationary frame or platform which is held fixed
above the sea surface. On the flat bottom of the buoy the kinematic condition is

∂Φ∗

∂z∗ =
∂ζ ∗

∂t∗ , x∗ ∈ SB, (2.7)

where ζ ∗(t∗) is the unknown vertical displacement of the buoy. Modelling the energy
extraction device as a linear load force:

−λ∗ ∂ζ ∗

∂t∗ , (2.8)

on a moving buoy with a constant coefficient λ∗, the conservation law of vertical
momentum of the buoy serves as the dynamic condition

M∗ ∂2ζ ∗

∂t∗2
+ λ∗ ∂ζ ∗

∂t∗ + πa∗2
ρgζ ∗ = −ρ

∫∫
SB

∂Φ∗

∂t∗ dS∗, (2.9)

where M∗ = ρπa∗2
H ∗ is the buoy mass and H ∗ its draft by Archimedes principle.

Let us introduce normalized variables as follows,

x∗
i = a∗x ′

i , t∗ = t ′

√
h∗

g
, Φ∗ = A∗

√
gh∗Φ, η∗ = A∗η, ζ ∗ = A∗ζ, (2.10)

where A∗ is the amplitude of the incoming wave. Let us rewrite the governing
equations. Note that the length scale is the small radius of the buoy (the microscale).
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In normalized form, Laplace’s equation (2.1) is unchanged. The free surface condition
(2.3) becomes

μ
∂η

∂t ′ =
∂Φ

∂z′ , x ′ ∈ SF , (2.11)

where

μ =
a∗

h∗ � 1 (2.12)

is the key parameter in this study. Equation (2.4) gives

η +
∂Φ

∂t ′ = 0, x ′ ∈ SF . (2.13)

Equations (2.11) and (2.13) can be combined into

∂Φ

∂z′ + μ
∂2Φ

∂t ′2 = 0, x ′ ∈ SF , (2.14)

and the condition on the seabed now reads

∂Φ

∂z′ = 0, z′ = −h∗

a∗ = − 1

μ
. (2.15)

As 1/μ � 1, this microscale boundary condition is effectively applied at z′ → −∞.
On the buoy, the kinematic conditions are

∂Φ

∂r ′ = 0′, x ′ ∈ SW, (2.16)

and
∂Φ

∂z′ = μ
∂ζ

∂t ′ , x ′ ∈ SB. (2.17)

The dynamic condition (2.9) now reads

a∗

h∗
H ∗

a∗
∂2ζ

∂t ′2 +
λ∗√

g/h∗

ρ∗gπa∗2

∂ζ

∂t ′ + ζ = −
∫∫

SB

∂Φ

∂t ′
dS ′

π
. (2.18)

Defining

H ′ =
H ∗

a∗ = O(1), λ =
λ∗√

g/h∗

ρ∗gπa∗2
= O(1), (2.19)

we change the same dynamic condition to dimensionless form,

μH ′ ∂
2ζ

∂t ′2 + λ
∂ζ

∂t ′ + ζ = − 1

π

∫∫
SB

∂Φ

∂t ′ dS ′, (2.20)

which can be combined with the kinematic condition (2.17) to give,(
μH ′ ∂2

∂t ′2 + λ
∂

∂t ′ + 1

)
∂Φ

∂z′ = −μ

π

∫∫
SB

∂2Φ

∂t ′2 dS ′. (2.21)

3. Multiple-scale approximation
Our main objective is to consider the collective effects of many small buoys on the

dynamics over a much larger region of dimensions comparable to the sea depth or to
the wavelength. In view of the contrast of scales we seek an asymptotic approximation
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by the method of multiple scales, and define the slow (macroscale) coordinates without
primes by

x = μx ′. (3.1)

Let us denote by ∇′ and �′ the gradient and Laplacian on the microscale and ∇ and
� the corresponding operators on the macroscale. We next introduce the expansions

Φ = e−iωt ′ [
φ0(x ′, x) + μφ1(x ′, x) + μ2φ2 (x ′, x) + · · ·

]
, (3.2)

η = e−iωt ′ [
η0(x

′, y ′, x, y) + μη1(x
′, y ′, x, y) + μ2η2(x

′, y ′, x, y) + · · ·
]
, (3.3)

ζ = e−iωt ′ [
ζ0(x

′, y ′, x, y) + μη1(x
′, y ′, x, y) + μ2ζ2(x

′, y ′, x, y) + · · ·
]
, (3.4)

where ω is the dimensionless frequency normalized according to

ω = ω∗

√
h∗

g
. (3.5)

Referring to the dimensionless governing equations in § 1, we get from Laplace’s
equation,

(�′ + 2μ∇′ · ∇ + μ2�) (φ0 + μφ1 + · · ·) = 0, x ′ ∈ ΩF . (3.6)

The combined free surface condition becomes(
∂

∂z′ + μ
∂

∂z
− μω2

)
(φ0 + μφ1 + · · ·) = 0, x ′ ∈ SF , (3.7)

while the kinematic condition is(
∂

∂z′ + μ
∂

∂z
+ · · ·

)
(φ0 +μφ1 +μ2φ2 + · · · ) = −iμω(η0 +μη1 + · · · ), x ′ ∈ SF . (3.8)

On the sidewall of the buoy we have(
∂

∂r ′ + μ
∂

∂r

)
(φ0 + μφ1 + · · ·) = 0, x ′ ∈ SW, (3.9)

and on the seabed (
∂

∂z′ + μ
∂

∂z

)
(φ0 + μφ1 + · · ·) = 0, z′ = − 1

μ
. (3.10)

At the bottom of the buoy, the kinematic condition (2.17) gives(
∂

∂z′ + μ
∂

∂z

)
(φ0 + μφ1 + φ2 + · · · ) = −iμω(ζ0 + μζ1 + · · · ), z′ = −H ′, (3.11)

while the dynamic condition gives

(−μω2H ′ − iλω + 1)(ζ0 + μζ1 + μ2ζ2 + · · · ) =
iω

π

∫∫
SB

(φ0 + μφ1 + μ2φ2 + · · · ) dS ′.

(3.12)

From the combined buoy condition, we get

(−μω2H ′ − iλω + 1)

[
∂φ0

∂z′ + μ

(
∂φ0

∂z
+

∂φ1

∂z′

)
+ μ2

(
∂φ1

∂z
+

∂φ2

∂z′

)
+ · · ·

]

− μ
ω2

π

∫∫
SB

(φ0 + μφ1 + μ2φ2 + · · · ) dS ′ = 0. (3.13)
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Let us also expand the factor

1

1 − iλω − μH ′ω2
=

∑
j=0

μj Fj (ω), (3.14)

where

F0(ω) =
1

1 − iλω
, F1(ω) =

H ′ω2

(1 − iλω)2
, etc. (3.15)

By separating the orders, a series of microscale boundary value problems are then
obtained at the orders O(1), O(μ) and O(μ2).

3.1. Leading order (O(1))

The governing conditions are homogeneous

�′φ0 = 0, x ′ ∈ Ω, (3.16a)

∂φ0

∂n′ = 0, x ′ ∈ SF ∪ SW ∪ SB ∪ Sb, (3.16b)

where Sb denotes the seabed at z′ = − μ−1� −1. Let us define a unit cell of the array
as shown in figure 1. Because there are a large number of periods in the array, we
impose the condition that on the microscale, the solution is periodic, i.e.

φ0(x
′, y ′, z′, x) = φ0(x

′ + d ′, y ′, z′, x), (3.17a)

φ0(x
′, y ′, z′, x) = φ0(x

′, y ′ + d ′, z′, x), (3.17b)

with

d ′ ≡ d∗/a∗, (3.18)

being the centre-to-centre distance between adjacent buoys.
The leading-order solution is clearly independent of the microscale,

φ0 = φ0(x), (3.19)

and the dependence on the macroscale is yet to be found. It follows from (2.4) that

η0 = iω φ0|z=0 , (3.20)

independently of the presence of the buoys. In the buoy area (3.12) gives the buoy
displacement

ζ0 = iωF0(ω) φ0|z=0 , x ∈ S̄B. (3.21)

Both η0 and ζ0 are independent of the microscale coordinates, and they are related
by

ζ0 = F0η0, x ′ ∈ S̄B, (3.22)

inside the buoy area.

3.2. First order (O(μ))

Using (3.19), we get from (3.6) that

�′φ1 = 0, x ′ ∈ ΩF , (3.23a)

and from (3.7) that

∂φ1

∂z′ = −
(

∂φ0

∂z
− ω2φ0

)
, x ′ ∈ SF . (3.23b)
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Equation (3.13) becomes

∂φ1

∂z′ = −
(

∂φ0

∂z
− ω2F0φ0

)
, x ′ ∈ SB. (3.23c)

We also have on the sidewall of the buoy,

∂φ1

∂r ′ = −∂φ0

∂r
= −ni

∂φ0

∂xi

, x ′ ∈ SW, (3.23d )

where n =(n1, n2) = (cos θ, sin θ) denotes the unit vector normal to the sidewall, and

∂φ1

∂z′ = −∂φ0

∂z
, z′ = − 1

μ
(3.23e)

on the seabed. In addition we require microscale periodicity on the cell boundaries.
Once φ1 is found, ζ1 follows from (3.12). As it is usual in homogenization analysis,
the macroscale physics at the leading order is found by requiring the solvability
of the inhomogeneous microscale problem at a higher order. The microscale cell
problem for φ1 is inhomogeneous. By applying Gauss’ theorem (or equivalently
applying Green’s formula to φ0 and φ1 over a unit cell) φ1 over the cell volume, we
get ∫∫

∂Ω

∂φ1

∂n′ dS ′ = 0, (3.24)

where ∂Ω is the boundary of the cell. This is just the condition of solvability for the
inhomogeneous problem of φ1. Since∫∫

SW

∂φ1

∂r ′ dS ′ = −μ

∫∫
SW

∂φ0

∂r
dS ′ = −μ∇φ0 ·

∫∫
SW

er dS ′ = 0, (3.25)

we must have ∫∫
SB

∂φ1

∂z′ dS ′ = −
∫∫

SF

∂φ1

∂z′ dS ′,

which gives at the leading order:

(1 − f )

(
∂φ0

∂z
− ω2φ0

)
+ f

(
∂φ0

∂z
− ω2F0φ0

)
= 0, z = 0, (3.26)

where for circular buoys

f ≡ πa∗2

d∗2
=

π

d ′2 , with 0 < f <
π

4
, (3.27)

is the area fraction of solid, or the packing ratio. Hence we have

∂φ0

∂z
− ω2 [1 + f (F0 − 1)] φ0 = 0, z = 0, x ∈ S̄B. (3.28)

This is a key result of our approximation and gives the macroscale boundary
condition over the part of the mean sea surface covered by buoys. In the open
water with no buoy, f =0, (3.28) reduces to the familiar condition on the free
surface:

∂φ0

∂z
− ω2φ0 = 0, x ∈ SF (3.29)
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Because of (3.28), (3.23b) and (3.23c) can be rewritten as

∂φ1

∂z′ = −∂φ0

∂z

(
1 − 1

1 − f (F0 − 1)

)
≡ −β

∂φ0

∂z
, x ∈ SF , (3.30)

and
∂φ1

∂z′ = −∂φ0

∂z

(
1 − F0

1 + f (F0 − 1)

)
≡ −β ′ ∂φ0

∂z
, x ∈ SB, (3.31)

which define β and β ′. In view of the forms of the boundary conditions, the solution
of the microscale problem for φ1 in a unit cell can be sought in the form

φ1(x ′, x) = −
3∑

j=1

Nj (x ′)
∂φ0

∂xj

. (3.32)

Then the horizontal components N1, N2 are governed by the following boundary value
problems in the unit cell,

�′Nj = 0, x ′ ∈ΩF , (3.33a)

∂Nj

∂z′ = 0, x ′ ∈SF ∪ SB ∪ Sb, (3.33b)

∂Nj

∂r ′ = nj , x ′ ∈SW, (3.33c)

where the outerward normal to SW is n =(n1, n2, 0). The vertical component N3 is
governed instead by

�′N3 = 0, x ′ ∈ΩF , (3.34a)

∂N3

∂z′ = β, x ′ ∈SF , (3.34b)

∂N3

∂z′ = 0, x ′ ∈Sb, (3.34c)

∂N3

∂z′ = β ′, x ′ ∈SB, (3.34d )

∂N3

∂r ′ = 0, x ′ ∈SW . (3.34e)

The solutions are made unique by adding the constraint∫∫∫
ΩF

Nj (x) dV ′ = 0, j = 1, 2 (3.35)

and N3 = 0 at a point x ′ = x ′
b = (0, 0, −μ−1) on the seabed. Being periodic in (x ′, y ′),

the harmonic functions Nj (x ′) are expected to diminish exponentially in z′. For
confirmation we have performed a numerical simulation using finite elements. The
results, given in figure 14 in Appendix A, show indeed that for a sufficiently slender cell
the solutions Ni are highly localized near the buoy. In view of (3.32), a consequence
is that

∂φ1

∂z′ → 0 as z′ → −∞, (3.36)

which in turn implies

∂φ0

∂z
= 0, z = −1, (3.37)



Wave-power extraction by a compact array of buoys 397

because of (3.23e). This provides the seabed boundary condition for the macroscale
problem.

3.3. Second order (O(μ2)) and the macroscale problem

At the second order, the microscale problem for φ2 is again inhomogeneous:

�′φ2 = −2∇′ · ∇φ1 − �φ0, x ′ ∈ ΩF , (3.38a)

∂φ2

∂z′ = −
(

∂φ1

∂z
+ ω2φ1

)
, x ′ ∈ SF , (3.38b)

∂φ2

∂z′ = −
(

∂φ1

∂z
− ω2F0φ1 − ω2F1φ0

)
, x ′ ∈ SB, (3.38c)

∂φ2

∂z′ = −∂φ1

∂z
, z′ = −μ−1, (3.38d )

∂φ2

∂r ′ = −∂φ1

∂r
, x ′ ∈ SW . (3.38e)

As |Ni | → 0 for z′ → −μ−1, (3.38d) reduces to:

∂φ2

∂z′ = 0, z′ = −μ−1 (3.39)

We now apply Green’s formula for φ0 and φ2 in the unit cell and invoke their
governing conditions on the microscale to get∫∫∫

ΩF

(
�φ0 + 2∇′ · ∇φ1

)
dV ′ =

∫∫
SF

(
∂φ1

∂z
− ω2φ1

)
dS ′

+

∫∫
SB

(
∂φ1

∂z
− ω2F0φ1 − ω2F1φ0

)
dS ′ −

∫∫
SW

∂φ1

∂r
dS ′. (3.40)

Using the fact that φ1 vanishes with Ni outside the vertical distance of O(1) from
z = 0, and that the cell volume |ΩF | = O(1/μ) is much greater than unity, we conclude
that ∫∫∫

ΩF

�φ0 dV ′ = 0.

Because φ0(x, t) is independent of x ′, we conclude further that

�φ0 = 0, −1 < z < 0. (3.41)

Thus φ0 is harmonic on the macroscale.
In summary, in the region with buoys, the macroscale variation of φ0(x) is governed

by (3.41) in the fluid region, subject to the boundary condition (3.28) on z = 0 in the
buoy-covered area, and (3.37) on the seabed. In the open water without buoys,
condition (3.28) must be replaced by (3.29), while (3.41) and (3.37) still apply. Note
that due to the small draft H ′, buoy inertia, hence resonance, is unimportant.

The homogenization analysis for finding the macroscale behaviour can in principle
be extended to periodic buoys of any shape. Once the macroscale is completely
determined, one can also derive the microscale fluctuations by solving the cell problems
for the vector N(x ′). Then φ1(x, x ′) can be found according to (3.32) and used to
calculate wave forces on each buoy hence the individual apparent mass and radiation
damping matrices. Such effort is needed for design, but is omitted here.
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We shall now apply these macroscale equations to examine wave power extraction
from one- and two-dimensional arrays in response to a plane incident wavetrain
arriving from x ∼ −∞.

4. Vertical eigenfunctions
As it is well known, the general solution in the open water region where f =0 can

be expressed as a series of the form

φ0(x) =

∞∑
n=0

ψn(x, y)fn(z), (4.1)

where

f0 = c0 cosh(k0(z + 1))and fn = cn cos(κn(z + 1)) (4.2)

are real orthogonal eigenfunctions in −1 <z < 0, and (k0, k1, . . . ) are the eigenvalues
of the dispersion relation,

ω2 = kn tanh(kn), n = 0, 1, . . . (4.3)

In particular, k0 is the positive real root and kn ≡ iκn is the nth imaginary root, i.e.

ω2 = k0 tanh(k0), ω2 = −κn tan(κn), n = 1, 2, 3, . . . (4.4)

With the choice of

c0 =

√
2

1 + ω−2 sinh2 k0

, cn =

√
2

1 − ω−2 sin2(κn)
, (4.5)

the vertical eigenfunctions are orthonormal:

〈fn|fm〉 ≡
∫ 0

−1

fn(z)fm(z) dz = δnm. (4.6)

Furthermore, the horizontal factors ψn must satisfy Helmholtz equations in the
horizontal plane (

∂2

∂x2
+

∂2

∂y2
+ k2

0

)
ψ0 = 0, (4.7a)(

∂2

∂x2
+

∂2

∂y2
− κ2

n

)
ψn = 0, n = 1, 2, 3, . . . (4.7b)

In the region of wave absorbing buoys we also assume

φ0(x) =

∞∑
n=0

Ψn(x, y)Fn(z). (4.8)

It can be shown that the eigenfunctions {Fn}, n =0, 1, 2, . . . are the solutions of the
boundary value problem

F ′′
n (z) − K2

nFn(z) = 0, − 1 < z < 0,

(F ′
n − σ 2Fn) = 0, z = 0,

F ′
n = 0, z = −1,

(4.9)

where σ is defined by

σ 2 ≡ ω2[f F0(ω) + (1 − f )] (4.10)
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Kn ω = 0.5 ω = 1 ω = 2

K1 0.5107 + 0.0230i 1.1165 + 0.0835i 3.3669 + 0.3159i
K2 0.0067 + 3.0634i 0.0357 + 2.8342i 0.0545 + 2.1332i
K3 0.0032 + 6.2448i 0.0163 + 6.1376i 0.0449 + 5.7538i
K4 0.0021 + 9.3992i 0.0107 + 9.3286i 0.0322 + 9.0697i
K5 0.0016 + 12.5472i 0.0080 + 12.4945i 0.0247 + 12.2996i
K6 0.0013 + 15.6927i 0.0064 + 15.6505i 0.0200 + 15.4944i
K7 0.0011 + 18.8368i 0.0053 + 18.8017i 0.0168 + 18.6715i
K8 0.0009 + 21.9802i 0.0046 + 21.9502i 0.0144 + 21.8385i
K9 0.0008 + 25.1232i 0.0040 + 25.0969i 0.0126 + 24.9991i
K10 0.0007 + 28.2658i 0.0035 + 28.2425i 0.0113 + 28.1555i

Table 1. First ten eigenvalues of (4.12) for λ= 1 and f =0.2.

and is complex due to energy extraction. Therefore the eigenfunctions Fn are complex

Fn = Cn coshKn(z + 1). (4.11)

The eigenvalue Kn is the nth complex root of the relation

σ 2 = Kn tanh Kn (4.12)

This type of dispersion relation with complex σ 2 arises also for waves through a
porous medium and has been studied by Dalrymple, Losada & Martin (1991) and
McIver (1998).

It is straightforward to show that the set {Fn} is orthogonal. By choosing the
coefficients {Cn} to be

Cn =

√
2

σ −2 sinh2(Kn) + 1
, (4.13)

the eigenfunctions {Fn} are also orthonormal,

〈Fn|Fm〉 ≡
∫ 0

−1

Fn(z)Fm(z) dz = δnm (4.14)

Since Kn is complex, the square root above is defined such that if the complex radical
is z = reiθ , its phase is limited to the range −π <θ � π. Dalrymple et al. (1991) and
McIver (1998) showed that this set of functions is a complete basis provided the
eigenvalues Kn are distinct, which is in general the case.

For a given frequency ω, packing ratio f and damping rate λ, σ is first defined. Kn

and Fn are found numerically. Before employing an usual iterative algorithm to solve
the complex transcendental equation, a good initial guess of the solution is needed.
For this purpose we solved the eigenvalue problem governed by (4.9) by the numerical
method of finite elements with a regular mesh and third-order Laplace elements. The
resulting Kn’s are used as a initial guesses for further iteration of (4.12). Sample Fn’s
are shown in figure 2. Sample eigenvalues are given in table 1.

Note that for f = 0, k is purely real and kn = iκn, n =1, 2, 3 . . . are purely
imaginary. For f � 1, K0 is almost real and Kn, n =1, 2, 3, . . . are almost imaginary.
Perturbation solutions of (4.12) have been used to confirm the values in table 1 where
f =0.2.

We now apply these results to examine two simple arrays.
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Figure 2. First few vertical eigenfunctions in the buoy domain according to (4.9). For ω = 1,
λ= 1 and f = 0.2.

L

IIIIII

Figure 3. Cross-section of an infinitely long array.

5. A long array of energy-absorbing buoys
Referring to figure 3, let us first consider a long array of width L with its edges

parallel to the crests of incoming plane waves. Assuming an incoming wave of unit
amplitude, the velocity potential in the open water on the incidence side (zone I) is

φI (x, z) =
−i

ωf0(0)

(
eik0xf0(z) +

∞∑
n=0

Rne
−iknxfn(z)

)
, −∞ < x < 0, (5.1)

where k0 is real and kn = iκn, n =1, 2, 3, . . . are imaginary roots of the dispersion
relation. In zone II of the buoys, the potential is

φII (x, z) =
−i

ωf0(0)

∞∑
n=0

(
Bne

iKnx + B ′
ne

−iKnx
)
Fn(z), 0 < x < L, (5.2)

and in the open water on the transmission side (zone III) we have

φIII (x, z) =
−i

ωf0(0)

∞∑
n=0

Tne
iknxfn(z), L < x < ∞. (5.3)

The eigenvalues (kn, Kn) and eigenfunctions (fn, Fn) have been defined in § 4. Let us
introduce

U (z) =
∂φ0

∂x
(0, z), U ′(z) =

∂φ0

∂x
(L, z), (5.4)
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as the horizontal velocities at x = 0 and x = L, respectively. Requiring flux continuity
and using the orthogonality of eigenfunctions, we find

R0 = 1 − 〈U |f0〉
ik0

, Rn = −〈U |fn〉
ikn

, (5.5a)

Bn = −〈(U ′ − e−iKnLU )|Fn〉
2Kn sin(KnL)

, B ′
n = −〈(U ′ − eiKnLU )|Fn〉

2Kn sin(KnL)
, (5.5b)

Tn =
〈U ′|fn〉
ikneiknL

. (5.5c)

We further require continuity of pressure (i.e. of potentials) at x = 0:

f0(z) +

(
1 − 〈U |f0〉

ik0

)
f0(z) −

∑
n�1

〈U |fn〉
ikn

fn(z) = −
∑
n�0

〈(U ′ − cos(KnL)U )|Fn〉
Kn sin(KnL)

Fn(z),

(5.6)

and at x = L:

−
∑
n�0

〈(U ′ cos(KnL) − U )|Fn〉
Kn sin(KnL)

Fn(z) =
∑
n�0

〈U ′|fn〉
ikn

fn(z). (5.7)

These are a pair of integral equations for U (z) and U ′(z) in −1 <z < 0. Let their
solutions be represented by the following orthonormal expansions

U =
∑

m

UmFm, U ′ =
∑

m

U ′
mFm, −1 < z < 0, (5.8)

with unknown coefficients, and let

fn =
∑

m

MnmFm, where 〈fn|Fm〉 = Mnm. (5.9)

The matrix elements Mnm can be obtained explicitly,

Mnm = ω2f (1 − F)
cn cosh(kn)Cm cosh(Km)(

k2
n − K2

m

) . (5.10)

Equations (5.6) and (5.7) become

2f0(z)
∑
n,q

MnqUq

1

ikn

fn(z) =
∑

n

(
− U ′

n

Kn sin(KnL)
+

Un

Kn tan(KnL)

)
Fn(z), (5.11)

∑
n,q

MnqU
′
q

1

ikn

fn(z) =
∑

n

(
− U ′

n

Kn tan(KnL)
+

Un

Kn sin(KnL)

)
Fn(z). (5.12)

By taking the scalar product with Fp for p = 0, 1, 2, 3, . . . , in turn we obtain from
(5.11) and (5.12)

2M0p −
∑
n,q

MnqUq

1

ikn

Mnp =

(
− 1

Kp sin(KpL)
p

U ′
n +

1

Kp tan(KpL)
Up

)
, (5.13)

and ∑
n,q

MnqU
′
q

1

ikn

Mnp =

(
− 1

Kp tan(KpL)
U ′

p +
1

Kp sin(KpL)
Up

)
. (5.14)
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Figure 4. Free surface elevation inside an array of length L = 1 (a) and L = 5 (b). Solid curve:
amplitude; dashed curve: phase difference from the undisturbed plane wave, in radians. The
parameters are f = 0.2, λ= 0.5 and k0 = 1.

The expansion coefficients Un, U
′
q are solved numerically after truncation. Afterwards

we get the buoy displacement ζ0 from the expression of φII . The transmission and
reflection coefficients follow from (5.5c) and (5.5a):

T ≡ T0 =
M0qU

′
q

ik0eik0L
, (5.15)

and

R ≡ R0 = 1 − 〈U |f0〉
ik0

. (5.16)

The dimensionless power-extraction efficiency is

E = 1 − |T |2 − |R|2. (5.17)

Figure 4 shows the amplitude and phase of the free surface elevation inside the buoy
region for array width of L = 1 and L =5 according the macroscale normalization.
The buoy displacement is simply proportional to that of the free surface displacement
in the same region by the complex reduction factor F0 whose magnitude,

|F0| =
1√

1 + (λω)2
, (5.18)

is smaller for higher extraction rate and frequency. Note first that there is no resonance.
For a fixed width L, the reflection coefficient R increases with the extraction rate λ,
as shown in figure 5. Both the transmission coefficient T and the extraction efficiency
E reach the maximum values for some intermediate extraction rate around λ= 0.5 as
shown in figure 7(a). The precise optimal value is around 0.5 and can be determined
numerically.

For a fixed extraction rate, the effects of array width L on the transmission and
reflection coefficients are shown in figure 6(b). The corresponding extraction efficiency
is shown in figure 7(b). The oscillatory variation of the reflection coefficient shown in
figures 5(b) and 6(b) is due to interference by strong reflection, similar to the case of
a finite shelf (cf. Mei, Stiassnie & Yue 2005, p. 149). In the transmission coefficient,
this oscillatory behaviour is less prominent due to energy extraction. We have indeed
checked that in the limit of extremely strong load force, λ � 1, the buoys no longer
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Figure 5. (a) Transmission and (b) reflection coefficients for an array of buoys with various
extraction rates λ, as indicated by numbers next to each curve. The packing ratio is f = 0.2
and L = 1.
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Figure 6. (a) Transmission and (b) reflection coefficients for a buoy array with various array
width L, as indicated next to each curve. The packing ratio is f = 0.2 and λ= 0.5.

move. In this case reflection is the strongest and the oscillatory variation in T is
recovered.

While it is not surprising that a larger L gives a higher efficiency, as shown in
figure 7(b), it is nevertheless interesting that the gain of energy extraction with a
wider array is more significant at low frequency. In practical situations k0 = k∗

0h
∗ will

likely be between 0 and 3. Our predictions can help the designer to choose the proper
width by considering both efficiency and construction economy.

In general scattering is significant, hence the maximum efficiency of energy
extraction is somewhat lower than that a large beam-sea device such as a Salter’s
duck (see Mynett, Serman & Mei 1979).

6. A circular array
6.1. The solution

Now let many buoys be gathered inside a circular area of radius R as sketched in
figure 8. First, it is well known that the incident plane wave in the direction of x can
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Figure 8. A circular array of energy-absorbing buoys.

be expanded as a sum of partial waves (see e.g. Abramowitz & Stegun 1964)

φi(x) =
−i

ωf0(0)
f0(z)e

ik0x =
−i

ωf0(0)
f0(z)

∞∑
m=0

εmimJm(k0r) cos(mθ),

where ε0 = 1 and εn = 2 for n= 1, 2, 3, . . . are the Jacobi symbols. Let us express the
total solution as

φ =

∞∑
m=0

φ̄m(r, z) cos(mθ). (6.1)

In the open water, the mth mode potential φ̄m can be written as

φ̄m =
−i

ωf0(0)

(
εmimJm(k0r)f0(z) +

∞∑
n=0

an,mψn,m(r)fn(z)

)
, r > R, (6.2)

with

ψn,m(r) =

{
H (1)

m (k0r) for n = 0

Km(Knr) = H (1)
m (iKnr) for n = 1, 2, . . .

, (6.3)

where H (1)
m is the first Hankel function of order m. The first term in (6.2) corresponds

to the incident wave and the series to the scattered/radiated waves. In the circular
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region of buoys, 0 < r < R, we can expand the potential as:

φ̄m =
−i

ωf0(0)

∞∑
n=0

bn,mΨn,m(r)Fn(z), 0 < r < R, (6.4)

with

Ψn,m(r) = Jm(Knr),

where (fn, kn) and (Fn, Kn) are the same as before. Let us denote the common radial
flux along r = R by

Um(θ, z) =
∂φ̄m

∂r
, r = R. (6.5)

The expansion coefficients are found in terms of Um by orthogonality:

a0,m =
〈Um|f0〉 − εmimk0J

′
m(k0R)

ψ ′
0,m(R)

, (6.6)

an,m =
〈Um|fn〉
ψ ′

n,m(R)
, (6.7)

bn,m =
〈Um|Fn〉
Ψ ′

n,m(R)
, (6.8)

which ensures the continuity of radial flux. Continuity of pressure (i.e. potential) at
r = R requires that

εmim
(

Jm(k0R) − k0J
′
m(k0R)

ψ ′
0,m(R)

ψ0,m(R)

)
f0(z) +

∞∑
n=0

(Um|fn)

ψ ′
n,m(R)

ψn,m(R)fn(z)

=

∞∑
n=0

〈Um|φn〉
Ψ ′

n,m(R)
Ψn,m(R)Fn(z). (6.9)

Introducing the expansions

fi =
∑

j

MijFj , Um =
∑

j

Uj,mFj , (6.10)

we get (
Jm(k0R) − k0J

′
m(k0R)

ψ ′
0,m(R)

ψ0,m(R)

) ∑
j

M0jFj (z)

+
∑
i,j,k

ψk,m(R)

ψ ′
k,m(R)

MkiUi,mMkjFj (z) =
∑

n

Ψn,m(R)

Ψ ′
n,m(R)

Un,mFn(z), (6.11)

for m =0, 1, 2, . . . . By taking the scalar product with Fp , we finally obtain for any
value of m:

∑
j

[(∑
k

Mkp

ψk,m(R)

ψ ′
k,m(R)

Mkj

)
− Ψp,m(R)

Ψ ′
p,m(R)

δp,j

]
Uj,m

= −εmim
(

Jm(k0R) − k0J
′
m(k0R)

ψ ′
0,m(R)

ψ0m(R)

)
M0p, (6.12)
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Figure 9. Free surface elevation in the neighbourhood of a circular array of buoys. The
circumference of the array is represented by the bold circle. λ= 0.5, f = 0.2 and k0 = 1. Waves
are incident from the left. Lighter colour corresponds to larger displacement. The phase
difference indicated by varying shades of grey is measured in radians.

which is a matrix equation for the unknown vector Uj,m for every m. Numerical
computations can be carried out after truncation of the series. After solving Uj,m, the

velocity Um and φm are found. Combining (6.2) and (3.21), we get the displacement
of the buoys

ζ0(r, θ) = F0(ω)

∞∑
m=0

∞∑
n=0

bn,mΨn,m(r)
Fn(0)

f0(0)
cos(mθ). (6.13)

Again it is proportional to the free surface displacement in the same area according
to (3.22). Hence we only show in figure 9 the free surface displacement in and
outside the buoy area, for two arrays of radii R = 1 and R = 5. For the smaller
array the displacement is relatively uniform and less than 1. For the larger array, the
displacement is significantly reduced on the leeward side.

6.2. Energy absorption

One can evaluate the extracted energy by calculating the total energy flux into a large
circular cylindrical surface of radius r � R. In physical variables the power output is

P∗ =

∫ 2π

0

∫ 0

−h∗

(
Re(iρω∗φ∗)

∂Re(φ∗)

∂r∗

)
r∗ dz∗ dθ,

(6.14)

= ρ

√
g

h∗ A∗2
gh∗h∗

∫ 2π

0

∫ 0

−1

1

2
Re

(
iφ

∂φ†

∂r

)
r dz dθ,
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where the overline denotes time averaging over a period and the dagger indicates
complex conjugate. Use has been made of the normalization defined in (2.10). The
implied normalization for power output is

P∗ = P
(

ρ

√
g

h∗ A∗2
gh∗2

)
. (6.15)

In contrast, the power flux per unit length of the incoming wave crest is

1

2k∗
0

ρgA∗2
C∗

g =
1

2
h∗ρgA∗2

√
g

h∗ h∗ 1

k0

dω

dk0

=

(
ρgA∗2

√
g

h∗ h∗2

)
Cg

2k0

,

where Cg = C∗
g/

√
gh∗ is the dimensionless group velocity of the incoming plane wave.

As in early theories the capture width W∗ can be defined as the ratio of the absorption
rate to the influx rate of wave power within unit length of the incoming wavefront.
As a measure of effectiveness, k∗

0W∗ represents the fraction of a wavelength where
the incoming power is depleted:

k∗
0W∗ = k0W =

P∗

1
2k∗

0
ρgA∗2C∗

g

=
2k0P
Cg

. (6.16)

Using the asymptotic expansions of Bessel functions for large k0r , we get from (6.2),

φm(r) ≈ Am

√
2

πk0r
ei(k0r−π/4) −i

ωf0(0)
f0(z), for k0r � 1, (6.17)

so that

φ(r) ≈ −i

ωf0(0)

(
eik0r cos(θ) +

∑
m

Am

√
2

πk0r
ei(k0r−π/4) cos(mθ)

)
f0(z), (6.18)

where the modal amplitudes Am can be computed from the solution using the
asymptotic expression of the Hankel functions:

Am = a0,mi−m.

Using the method of stationary phase it can be shown that

P = 2
1

ωf0(0)2

[
|A0|2 +

1

2

∑
m�1

|Am|2 + Re

(∑
m�0

Am

)]
. (6.19)

Details are similar to that in Mei et al. (2005, p. 381), and omitted. The capture width
is therefore

k∗
0W∗ = k0W =

4k0

ωCgf0(0)2

[
|A0|2 +

1

2

∑
m�1

|Am|2 + Re

(∑
m�0

Am

)]
.

Finally, using the expression for f0 and the dispersion relation, we find

Cgf0(0)2 =
k0

ω
,

hence

k0W = 4

(
|A0|2 +

1

2

∑
m�1

|Am|2 + Re

(∑
m�0

Am

))
. (6.20)
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Figure 10. Dependence of effectiveness on the extraction rate λ whose values are indicated
next to the curves. The packing ratio is f = 0.2. (a) and (b) R = 1; (c) and (d ) R = 5.

The same result can also be derived by calculating the rate of work done on the
heaving buoys. Another measure of effectiveness is the ratio of the extraction rate to
the influx rate across the entire diameter of the array, W/2R which is expected to be
less than unity.

For evaluating the merits of the compact array let us first recall some results
known for a single buoy : (i) The optimal k0W is 1 at best for a heaving buoy of
any size. If all three degrees of freedom are used to extract energy then maximum
k0W =3 (Newman 1979; Falnes 2002; Mei et al. 2005). (ii) The peak value of k0W
occurs at k0ab = O(1). In other words, the peak occurs at higher k0 = k∗h∗ for smaller
ab = a∗

b/h∗. (iii) The curve of k0W versus k0 = k∗h∗ has a broader peak for a smaller
ab. Properties (ii) and (iii) are based on numerical computations via the eigenfunction
expansion method of Black, Mei & Bray (1971) and are confirmed by approximate
reasoning in Appendix B.

In light of these let us present the results for a circular array of buoys. Figure 10
shows the dependence of the two measures of effectiveness on the extraction rate λ.
For two different array radii R, the greatest k0W and W/2R are achieved at around
the same extraction rate of λ= 0.5. The optimal rate of extraction depends slightly
on the frequency/wavenumber of the incoming wave.

Figure 11 shows that for a fixed packing ratio and damping rate, the capture
width kW and efficiency W/2R naturally increase with the radius of the array. More
important, the bandwidth of both quantities is very large for all array sizes.
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Figure 11. Dependence of the effectiveness on the array radius R whose values are indicated
next to the curves. (λ=0.5 and R = 1).

0 1 2 3 4 5

1

2

3

4

5

6

7

8

0.1

0.2

0.5

0.75

k0 k0

k 0
�

0 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.5

0.75

�
/2

R

2π × Capture width/wavelength Ratio of capture width to array radius.

(b)(a)

Figure 12. Dependence of effectiveness on the packing ratio f whose values are indicated
next to the curves. (λ=0.5 and R = 1).

Figure 12 shows that the capture width increases monotonically with the packing
ratio f , and with the incoming wave frequency. Recall that for circular buoys in a
square array the maximum packing ratio is f � π/4 ≈ 0.8.

Finally, let us compare a large buoy whose radius and draft are equal, with a buoy
array of the same total displaced volume πf R2H where H ≡ H ∗/h∗ and is taken
to be H = 0.1 for illustration (The dimensionless draft H of small buoys does not
influence the energy extraction, but a value is chosen here to define the total volume
for the array.). Then the radius and draft of the large buoy are both ab = (f R2H )1/3.
Figure 13 compares the capture widths over a wide range of frequencies. The solid
curves gives the capture width for an array for different radii R, with fixed f = 0.2
and λ= 0.5. The dashed curves represent the capture width for a single-buoy absorber
of radius ab. In the range of 0 <k0(= k∗

0h
∗) < 6 the maximum k0W is at most unity

for a single heaving buoy, and can be 3 if roll and sway can also be resonated. Note,
however, that the bandwidth of a single buoy is always much narrower. Thus the
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Figure 13. Capture widths of a circular arrays of small buoys of radii R = 0.5, 1, 2 are shown
by dashed curves. The input parameters are: draft H = H ∗/d∗ = 1/10, packing fraction f = 0.2,
and extraction rate λ= 0.5. For comparison the capture widths of a large buoy of equal total

volume with radii ab = (f R2H )
1
3 = 0.17, 0.27, 0.43 are shown by solid curves. The buoy draft

is equal to the radius. For each buoy the extraction rate is chosen to be the optimal value at
the corresponding resonance peak.

circular buoy array is potentially more advantageous from the technical viewpoint of
efficiency.

7. Conclusions
Stimulated by a recent invention in Norway, we have developed a theory for the

hydrodynamics and power-extraction efficiency of a compact array of small buoys.
The typical wavelength is assumed to be comparable to the overall size of the array
but much greater than the dimensions of individual buoys. For a periodic array the
two-scale method of homogenization leads to an effective equation governing the
spatial average. The energy-absorbing efficiency is studied for a long strip of buoys
and for a circular array. The latter geometry is shown to be potentially advantageous,
having good efficiency over a broad range of frequencies, unlike that of one large buoy.
The theory can be readily modified for wave interaction with broken ice floes on the
sea surface, if the ice floes are idealized as identical floating bodies in a periodic array.

Finally, we stress that the homogenization theory employed here is effective only
when two sharply different scales exist. When both the buoy dimension and the spacing
are not small compared to the wavelength, direct numerical methods are available but
require greater computational effort. For simple geometries such as vertical circular
cylinders, formally exact theories have been reported by Linton & Evans (1990, 1992);
Linton & Mclver (1996); Manihar & Newman (1997); Chamberlain (2007) for an
infinite or semi-infinite line of fixed vertical cylinders with finite radius. These methods
still call for significant numerical work. Approximate theories on the interaction of
water waves with many floating objects have been given by Falnes (1980), Falnes &
Budal (1982), Falnes (1984) and de O. Falcao (2002) for large separation and weak
hydrodynamic interactions without Bragg scattering. For Bragg scattering by an array
of very slender vertical cylinders, the present approximation leads to explicit analytical
results and the accuracy has been numerically confirmed by Li & Mei (2007) using
the method of finite elements.

We thank Dr Yuming Liu and Dr Dick Yue of MIT for illuminating discussions.
This research has been supported by a grant from MASDAR Institute of Science and
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Figure 14. Finite element solutions of (3.33) and (3.34) for a tall cell with H ′ = 1, d ′ = 4 and
different μ. Note the exponential decay with depth.
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Appendix A. Numerical confirmation of the localization of Nj (x)

The distributions of the Nj in a cell are computed by the finite element method,
and plotted in figure 14. For N3 the constraint N3(0, 0, −1) = 0 was imposed for
uniqueness. It can be seen that all solutions diminish rapidly with the depth.

Appendix B. Order estimate for a single buoy
When a heaving buoy of radius ab and draft Hb is at resonance, the buoyancy

restoring force ρgπa2
b roughly equals the total (real and hydrodynamic) inertia αρπa2

bH

where α = O(1). Thus the resonance frequency is

ω∗2
=

ρgπa∗
b
2

αρπa∗
b
2
H ∗

b

, or ω2 =
1

ab

ab

αHb

. (B 1)

By the dispersion relation, resonance occurs at

k0ab =
ab

αHb tanh(k0)
. (B 2)
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For k0 = O(1) and ab/Hb = O(1), we get k0ab = O(1) at resonance. In the plot of k0W
versus k0, resonance is at higher value of k0 if ab is smaller, as shown in figure 13.

The dimensionless capture width can be shown to be

k0W =
k0

Cg

λgω
2|F D

z |2

ω2(λzz + λg)2 + (πa2
b − ω2

(
πa2

bH + μzz

)
)2

, (B 3)

where FD represents the diffraction force, λzz the radiation damping coefficient
(normalized according to λzz = λ∗

zz/ρg1/2h∗5/2) and μzz the hydrodynamic mass. Using
the fact that the capture width is at its peak value of unity when resonance occurs
and λg = λzz, (B 3) can be approximated by

k0W ≈ (2λzzω)2

πa2
b(1 − αHω2) + (2λzzω)2

, (B 4)

around the peak where 1 − αHω2 ≈ 0 and α = O(1) is a constant. The values of
ω2 =ω2

± when k0W =1/2 on both sides of the peak are found to be

ω2
± ≈ πa2

b ± 2λzzω

απa3
b

, (B 5)

hence

ω2
+ − ω2

− ≈ 4λzzω

απa3
b

, (B 6)

or

k0+ − k0− ≈ 4λzzω

απa3
b

, (B 7)

since ω2 =O(k0). For small k0ab it is known that (Mei et al. 2005)

λ∗
zz =

ρgk∗
0a

∗
b
4

4C∗
g

.

Numerical computations show that this order of magnitude is still valid for
k0ab = O(1), hence

λzz = O

(
k0ab

Cg

a3
b

)
Since at the peak k0ab = O(1), which implies ω = O(a−1/2

b ) and Cg = O(a1/2
b ), it follows

that

λzz = O
(
a

5/2
b

)
.

Thus the peak width of the k0W versus k0 curve is

k0+ − k0− ∝ 1/ab. (B 8)

Consequently the peak width is larger for a smaller buoy, in accord with figure 13.
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